合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 二氧化鈦表面親疏水研究取得進展
> 不同有機溶劑對離子液體密度、表面張力和導(dǎo)熱系數(shù)的影響
> Kibron表面張力儀研究燒結(jié)礦聚結(jié)行為
> 可視化實驗方法研究電場作用下液滴撞擊表面的動態(tài)行為(四)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(三)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(三)
> 基于水煤漿流變性和動態(tài)表面張力觀察水煤漿的微觀破裂特性(二)
> 雙鏈乳糖酰胺季銨鹽表面活性劑物化性能、應(yīng)用性能及復(fù)配性能研究
> 往復(fù)振動篩板塔強化低界面張力萃取體系傳質(zhì)效率(二)
> 不同種類與濃度的無機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
推薦新聞Info
-
> 彈簧秤測量水的表面張力系數(shù)實驗裝置改進措施及效果
> 電暈對BOPP薄膜表面張力、化學(xué)結(jié)構(gòu)、元素組成的影響
> 半泡法測定液體表面張力系數(shù)理論、實驗設(shè)計
> 全氟庚烷端基聚丙烯酸(FPAA)合成方法及水溶液表面張力測定
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(下)
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(上)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(三)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(二)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(一)
> 氣凝膠的合成方法及干燥方法一覽
界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(一)
來源:現(xiàn)代地質(zhì) 瀏覽 490 次 發(fā)布時間:2025-05-15
非常規(guī)油氣資源正在成為中國油氣勘探的重點對象之一,其中泥頁巖油氣藏是目前國內(nèi)外勘探開發(fā)的“熱點”。但由于泥頁巖具有孔徑小、滲透率低、比表面積大、孔隙結(jié)構(gòu)復(fù)雜等特點,常規(guī)油氣勘探開發(fā)技術(shù)難以用于頁巖油氣的開采,且目前頁巖油氣勘探開發(fā)技術(shù)較為薄弱,因此加強對泥頁巖孔徑分布、孔隙結(jié)構(gòu)的研究,對于頁巖油氣的勘探開發(fā)有著十分重要的意義。
目前研究泥頁巖孔隙結(jié)構(gòu)、孔徑分布的方法主要有3大類:(1)以微區(qū)分析為主的圖像分析技術(shù)——FESEM、FIB-HIM等;(2)以壓汞法和氣體等溫吸附為主的流體注入技術(shù);(3)以核磁共振、中子小角散射計算機斷層成像技術(shù)為代表的非流體注入技術(shù)。圖像分析技術(shù)能夠直觀、方便、快捷地獲取孔隙形態(tài)等方面的特征,但該方法研究范圍小,主要觀察的是微米級區(qū)域,因此代表性較差,且數(shù)據(jù)處理流程復(fù)雜,工作量大;非流體注入技術(shù)由于其原位、無損分析及粒子高穿透力的特點,使研究多種地質(zhì)條件下的孔隙特性成為可能,但該技術(shù)無法得到泥頁巖的孔喉特征;因此本文使用壓汞法研究泥頁巖的孔徑分布——流體注入法(壓汞法),在表征微孔隙的孔徑分布、比表面積等方面具有獨到優(yōu)勢,且能得到樣品的孔喉特征;壓汞法是目前研究泥頁巖大孔孔徑分布、孔喉結(jié)構(gòu)常用的實驗方法,且具有實驗操作簡單、時間短、成本低、能夠較準(zhǔn)確表征孔徑分布等優(yōu)點,因此壓汞法一直被廣泛應(yīng)用于多孔材料孔徑分布、孔喉特征等方面的研究。
近年來,學(xué)者研究發(fā)現(xiàn),壓汞法實驗數(shù)據(jù)處理過程中Washburn方程所涉及的兩個關(guān)鍵參數(shù)——界面張力γ和潤濕角θ,并非前人認為的定值,而是隨孔半徑r變化的參數(shù),這使得前人利用壓汞法所得孔徑分布有較大誤差。本文以松遼盆地青山口組頁巖樣品為例,對比研究了界面張力γ和潤濕角θ參數(shù)校正前后的孔徑分布,為更加精確地表征頁巖孔徑分布奠定了基礎(chǔ)。
1實驗樣品及處理
實驗樣品取自松遼盆地青口組的黑色泥頁巖巖心,樣品取自不同井位、不同深度、有機質(zhì)含量不同的泥頁巖,按照標(biāo)準(zhǔn)GB/T21650.1進行高壓壓汞實驗。實驗儀器使用的是美國康塔公司(Quantachrome)GT60型全自動孔隙分析儀,該壓汞儀測試時的注汞壓力范圍為0.5~60 000 psi,可測孔徑范圍大約是0.08~950μm。
在實驗進行前,首先對樣品進行脫油處理,然后取處理后的3 g樣品,大小3~4 mm的顆粒,在110℃條件下烘干,然后將處理好的樣品裝入膨脹計內(nèi),該過程必須在氮氣手套箱中進行,然后將該樣品放入測控儀內(nèi)進行抽真空脫氣處理,最后注入液態(tài)汞并連續(xù)規(guī)律加壓至60 000 psi。
同時對該樣品進行熱解、TOC測試等實驗以獲取該樣品的基礎(chǔ)地球化學(xué)資料(表1)。
2高壓壓汞模型中參數(shù)的校正及實驗數(shù)據(jù)分析與處理
2.1高壓壓汞法的原理
壓汞法的原理基于汞對一般固體不浸潤,界面張力抵抗其進入孔中,欲使汞進入孔中,則需要施加外界壓力,外壓越大,汞能進的孔徑越小,進汞量越多。測試不同外壓下的進汞量,用Washburn方程得到壓力P與孔半徑r的關(guān)系,即可得到對應(yīng)的孔體積和孔徑分布。
表1泥頁巖樣品基礎(chǔ)地球化學(xué)數(shù)據(jù)
2.2 Washburn方程簡介及存在的問題
Washburn方程是壓汞法分析樣品孔徑分布的基本方程,是由Washburn 1921年提出的液體芯吸的動力描述方程,用于研究巖石孔徑分布時,它假設(shè)巖石中的孔是規(guī)則的圓柱形,從而建立壓力與孔半徑的關(guān)系式(公式1)。
式中:Pc為毛管壓力,Pa;γHg為汞表面張力,N/m;θHg為汞潤濕角,rad;r為孔半徑,m。
現(xiàn)在通用的Washburn方程將表面張力γ和潤濕角θ視為定值,但由于納米尺度效應(yīng)使得界面張力γ和潤濕角θ隨著孔半徑r的變化而發(fā)生變化,因此要對原Washburn方程中潤濕角與界面張力這兩個參數(shù)進行校正(公式(2)—(4))。
式中:Pc為毛管壓力,Pa;γHg為汞表面張力,N/m;θHg為汞潤濕角,rad;r為孔半徑,m;γ∞為孔半徑無窮大時汞的表面張力,γ∞=480 mN/m;θHg∞為孔半徑無窮大時汞的潤濕角(θHg∞=140°);Sb為吸附熱,Sb=Eo/Tb=93.99 J/(mol·k),Eo為蒸發(fā)焓,Tb為沸點;R為理想氣體常數(shù),R=8.314 J/(mol·k);h為有效分子或原子直徑,h=0.302 nm;rc為液滴曲率半徑,rc=-r/cosθ,nm;常數(shù)C1、C2、C3分別為18.345、1.719、2.711 7。