合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> LB制膜的應用領域、LB膜的制備方法、轉移與光照
> 液態(tài)表面張力儀表面結構原理
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動態(tài)演化的核心控制點
> 硅丙乳液質(zhì)量分數(shù)與粘度、表面張力的關系及在模擬病害壁畫修復中的應用(四)
> 鏈烷烴的表面張力與內(nèi)壓、比例、溫度的關系
> 豬肉、雞肉和魚肉肌漿蛋白油-水界面性質(zhì)、氨基酸組成、蛋白質(zhì)構象研究(二)
> 基于液滴機械振動的液體表面張力測試方法
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(二)
> LB膜技術制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
推薦新聞Info
-
> 水、常溫液態(tài)金屬等9種流體對液滴碰撞壁面影響的數(shù)值研究(三)
> 水、常溫液態(tài)金屬等9種流體對液滴碰撞壁面影響的數(shù)值研究(二)
> 水、常溫液態(tài)金屬等9種流體對液滴碰撞壁面影響的數(shù)值研究(一)
> 彈簧秤測量水的表面張力系數(shù)實驗裝置改進措施及效果
> 電暈對BOPP薄膜表面張力、化學結構、元素組成的影響
> 半泡法測定液體表面張力系數(shù)理論、實驗設計
> 全氟庚烷端基聚丙烯酸(FPAA)合成方法及水溶液表面張力測定
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(下)
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(上)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(三)
3種反應型陽離子Gemini表面活性劑合成、表征和性能測試(下)
來源:化工進展 瀏覽 909 次 發(fā)布時間:2025-02-08
2結果與討論
2.1 Gemini表面活性劑的結構表征
2.1.1紅外光譜分析
圖1、圖2為雙子表面活性劑的紅外光譜圖。由圖1可知,目標產(chǎn)物通過中間體1和中間體2的對比已反應合成,目標產(chǎn)物C12-3(OH)-DM中3357cm-1為—OH的伸縮振動吸收峰,3010cm-1為不飽和雙鍵氫C=C—H的伸縮振動吸收峰;2921cm-1、2851cm-1為飽和甲基和亞甲基C—H的伸縮振動吸收峰;1726cm-1為酯基上C=O鍵伸縮振動吸收峰;1637cm-1為C=C的伸縮振動吸收峰;1472cm-1為C—N的伸縮振動吸收峰;1380cm-1、1326cm-1分別為甲基和亞甲基的彎曲振動吸收峰;1262cm-1為酯基上C—O的伸縮振動吸收峰,這些峰的存在說明紅外圖譜與C12-3(OH)-DM分子式中的基團一一對應。圖2顯示,3種雙子表面活性劑均已合成。
圖1 Gemini表面活性劑C12-3(OH)-DM的紅外光譜圖
圖2 Gemini表面活性劑Cm-3(OH)-DM的紅外光譜圖
2.1.2核磁共振分析
圖3、圖4是Gemini表面活性劑的核磁共振氫譜圖。由圖3、圖4可知,目標產(chǎn)物通過與中間體1和中間體2的對比已反應合成,氫譜上的H峰位置和比例與Cm-3(OH)-DM的分子式一一對應,溶劑為D2O。目標產(chǎn)物C12-3(OH)-DM中δ=6.15、5.58為C=C—H的質(zhì)子信號,δ=4.21為—COO—CH2的質(zhì)子信號,δ=3.4~3.6為N—CH2—的質(zhì)子信號,δ=3.12為N—CH3的質(zhì)子信號,δ=1.77為C=C—CH3的質(zhì)子信號,δ=1.12為—CH2—的質(zhì)子信號,δ=0.76為—CH3的質(zhì)子信號。圖4顯示,3種雙子表面活性劑均已合成。
2.1.3元素分析
表1列出了元素分析得到的Cm-3(OH)-DM中C、H和N含量的測定值及其理論值。由表1可得,測定值與理論值非常接近。結合紅外圖譜、核磁共振氫譜及元素分析的數(shù)據(jù)可知,實驗合成的化合物為目標產(chǎn)物反應型陽離子Gemini表面活性劑Cm-3(OH)-DM(m=12,14,16)。
圖3 Gemini表面活性劑C12-3(OH)-DM的核磁共振氫譜
圖4 Gemini表面活性劑Cm-3(OH)-DM的核磁共振氫譜
表1 Gemini表面活性劑Cm-3(OH)-DM中C、H和N的含量
2.2 Gemini表面活性劑的性能分析
2.2.1表面性能
圖5為Gemini表面活性劑Cm-3(OH)-DM的表面張力隨濃度變化圖。由所制雙子表面活性劑的表面性能數(shù)據(jù)所示。溶液的表面張力隨著表面活性劑濃度的增加而迅速降低,直至達到平衡,且能在低濃度時即可顯著降低水的表面張力。并且C12-3(OH)-DM(32.1mN/m)、C14-3(OH)-DM(30.1mN/m)和C16-3(OH)-DM(27.7mN/m)的最低表面張力值比對應的單子陽離子表面活性劑C12TACl(39mN/m)、C14TACl(38mN/m)和C16TACl(40mN/m)低得多[1-2,24],且其臨界膠束濃度分別為0.0265mmol/L、0.0169mmol/L、0.0083mmol/L比對應的單子表面活性劑低一到兩個數(shù)量級。因此,所合成的雙子表面活性劑是一種非常高效的表面活性劑。表2列出了Gemini表面活性劑Cm-3(OH)-DM的表面性能。
圖5 Gemini表面活性劑Cm-3(OH)-DM的表面張力
表2 Gemini表面活性劑Cm-3(OH)-DM的表面性能
2.2.2泡沫性能
表3為Gemini表面活性劑Cm-3(OH)-DM的泡沫高度和液體高度隨時間的變化數(shù)據(jù)表。由表3可見,雙子表面活性劑的泡沫高度在10min時達到平衡值,起泡性能隨疏水碳鏈長度的加成先增加后降低,在疏水碳鏈長度為14時泡沫高度達到最大,碳鏈長度為16時泡沫高度最低。而穩(wěn)泡性能,同起泡性能變化相同,疏水碳鏈長度為14時泡沫穩(wěn)定率達到82.5%,為碳鏈16的雙子表面活性劑泡沫穩(wěn)定性為73.4%。
表3 Gemini表面活性劑Cm-3(OH)-DM的泡沫性能
2.2.3乳化性能
采用量筒法進行表面活性劑乳化力的測定,結果見表4。雙子表面活性劑比傳統(tǒng)單子表面活性劑十二烷基三甲基氯化銨[1-2,22]分出相同體積水的時間長,且隨著烷基碳鏈長度的增加,水相所分離出水量所用的時間也越長。這可能是因為在油/水界面上,吸附的表面活性劑分子之間排列越緊密,形成界面的膜強度越高。根據(jù)單分子吸附膜理論,界面張力減小,乳化性能越好,表現(xiàn)為從乳狀液中分離出水所用的時間越長。隨著烷基碳鏈長度的增加,碳氫鏈間的相互作用力更強,兩個表面活性劑單體分子之間的連接更加緊密,形成的界面膜強度也越高,因此烷基碳鏈長度越長的雙子表面活性劑的乳化效果越好。
表4 Gemini表面活性劑Cm-3(OH)-DM的乳化性能
3結論
(1)以甲基丙烯酸二甲氨基乙酯(DM)、環(huán)氧氯丙烷(ECH)和3種長鏈烷基叔胺為主要原料,合成了3種反應型陽離子Gemini表面活性劑C12-3(OH)-DM、C14-3(OH)-DM和C16-3(OH)-DM,并通過紅外光譜、核磁共振光譜和元素分析證實得到了目標產(chǎn)物。
(2)測定了Cm-3(OH)-DM在水溶液中的表面張力、cmc以及其熱力學常數(shù),得到其cmc分別為0.0265mmol/L、0.0169mmol/L、0.0083mmol/L,γcmc分別為32.1mN/m、30.1mN/m、27.7mN/m。以上數(shù)據(jù)表明與對應的傳統(tǒng)單子表面活性劑相比,Gemini表面活性劑Cm-3(OH)-DM(m=12,14,16)具有很好的表界面活性。
(3)Cm-3(OH)-DM有良好的發(fā)泡和穩(wěn)泡效果,10min內(nèi)泡沫達到平衡值,泡沫穩(wěn)定率分別達到79.6%、82.5%、73.4%。與傳統(tǒng)單體表面活性劑C12TACl相比,Cm-3(OH)-DM還具有較高的乳化力。
符號說明
A——吸附面積,nm2
cmc——臨界膠束濃度,mmol/L
Γ——吸附量,μmol/m2
Δ——吸附能,J/mol
γ——表面張力,mN/m
下角標
12——十二烷基碳鏈數(shù)
14——十四烷基碳鏈數(shù)
16——十六烷基碳鏈數(shù)
m——三種烷基碳鏈數(shù)